skip to main content


Search for: All records

Creators/Authors contains: "Chandrasekhar, P. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The synthesis, characterization and incorporation of fullerene derivatives bearing primary, secondary and tertiary nitrogen atoms, which possess different basicities, in perovskite solar cells (PSCs), is reported. In this work, we tested the compounds as conventional electron transporting materials (ETMs) in a single layer with phenyl-C 61 -butyric acid methyl ester (PC 61 BM) as control. Additionally, we tested the idea of separating the ETM into two different layers: a thin electron extracting layer (EEL) at the interface with the perovskite, and an electron transporting layer (ETL) to transport the electrons to the Ag electrode. The compounds in this work were also tested as EELs with C 60 as ETL on top. Our results show that the new fullerenes perform better as EELs than as ETMs. A maximum power conversion efficiency (PCE) value of 18.88% was obtained for a device where a thin layer (∼3 nm) of BPy-C 60 was used as EEL, a higher value than that of the control device (16.70%) with only pure C 60 . Increasing the layer thicknesses led to dramatically decreased PCE values, clearly proving that the compound is an excellent electron extractor from the perovskite layer but a poor transporter as a bulk material. The improved passivation ability and electron extraction capabilities of the BPy-C 60 derivative were demonstrated by steady state and time-resolved photoluminescence (SS-and TRPL) as well as electrochemical impedance spectroscopy (EIS) and X-Ray photoelectron spectroscopy (XPS) measurements; likely attributed to the enhanced basicity of the pyridine groups that contributes to a stronger interaction with the interfacial Pb 2+ . 
    more » « less